GNU MathProgGNU MathProg is a modeling language intended for describing linear mathematical programming models.
See http://gnuwin32.sourceforge.net/downlinks/glpk-doc-zip.php for a complete description of this modeling language. GNU MathProg is part of the GLPK solver.
See http://www.gnu.org/software/glpk/glpk.html
and http://gnuwin32.sourceforge.net/packages/glpk.htm
for the homepage of it. lp_solve -rxli xli_MathProg Diet1.mod This gives as result: Value of objective function: 88.2 Actual values of the variables: Buy[BEEF] 0 Buy[CHK] 0 Buy[FISH] 0 Buy[HAM] 0 Buy[MCH] 46.6667 Buy[MTL] 0 Buy[SPG] 0 Buy[TUR] 0 MathProg has also the possibility to have the model and data in two separate files. lp_solve can handle this also. For example: lp_solve -rxli xli_MathProg diet.mod -rxlidata diet.dat This gives as result: Value of objective function: 88.2 Actual values of the variables: Buy[BEEF] 0 Buy[CHK] 0 Buy[FISH] 0 Buy[HAM] 0 Buy[MCH] 46.6667 Buy[MTL] 0 Buy[SPG] 0 Buy[TUR] 0 Generating MathProg modelsThe XLI can also create a MathProg model, however it doesn't use the strength of the language. Constraints are written out line per line. But it can be a starter. For example: lp_solve model.lp -wxli xli_MathProg model.mod This gives as model.mod: /* Variable definitions */ var x >= 0; var y >= 0; /* Objective function */ maximize obj: +143*x +60*y; /* Constraints */ R1: +120*x +210*y <= 15000; R2: +110*x +30*y <= 4000; R3: +x +y <= 75; APIUse the lpsolve API call read_XLI to read a model and write_XLI to write a model. See also External Language Interfaces. IDEAlso from within the IDE, this XLI can be used. However, some entries must be added in LpSolveIDE.ini (in the folder where the IDE is installed). In the [XLI] section the following must be added: lib1=xli_MathProg And a new section for the MathProg XLI must also be added: [xli_MathProg] extension=.mod language=MATHPROG Then make sure that the xli_MathProg.dll is available for the IDE. This must be done by placing this dll in the IDE folder or in the Windows system32 folder. Example models/dataDiet1.modset NUTR; set FOOD; param cost {FOOD} > 0; param f_min {FOOD} >= 0; param f_max {j in FOOD} >= f_min[j]; param n_min {NUTR} >= 0; param n_max {i in NUTR} >= n_min[i]; param amt {NUTR,FOOD} >= 0; var Buy {j in FOOD} >= f_min[j], <= f_max[j]; minimize total_cost: sum {j in FOOD} cost[j] * Buy[j]; subject to diet {i in NUTR}: n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i]; data; set NUTR := A B1 B2 C ; set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ; param: cost f_min f_max := BEEF 3.19 0 100 CHK 2.59 0 100 FISH 2.29 0 100 HAM 2.89 0 100 MCH 1.89 0 100 MTL 1.99 0 100 SPG 1.99 0 100 TUR 2.49 0 100 ; param: n_min n_max := A 700 10000 C 700 10000 B1 700 10000 B2 700 10000 ; param amt (tr): A C B1 B2 := BEEF 60 20 10 15 CHK 8 0 20 20 FISH 8 10 15 10 HAM 40 40 35 10 MCH 15 35 15 15 MTL 70 30 15 15 SPG 25 50 25 15 TUR 60 20 15 10 ; end; diet.modset NUTR; set FOOD; param cost {FOOD} > 0; param f_min {FOOD} >= 0; param f_max {j in FOOD} >= f_min[j]; param n_min {NUTR} >= 0; param n_max {i in NUTR} >= n_min[i]; param amt {NUTR,FOOD} >= 0; var Buy {j in FOOD} >= f_min[j], <= f_max[j]; minimize total_cost: sum {j in FOOD} cost[j] * Buy[j]; subject to diet {i in NUTR}: n_min[i] <= sum {j in FOOD} amt[i,j] * Buy[j] <= n_max[i]; diet.datset NUTR := A B1 B2 C ; set FOOD := BEEF CHK FISH HAM MCH MTL SPG TUR ; param: cost f_min f_max := BEEF 3.19 0 100 CHK 2.59 0 100 FISH 2.29 0 100 HAM 2.89 0 100 MCH 1.89 0 100 MTL 1.99 0 100 SPG 1.99 0 100 TUR 2.49 0 100 ; param: n_min n_max := A 700 10000 C 700 10000 B1 700 10000 B2 700 10000 ; param amt (tr): A C B1 B2 := BEEF 60 20 10 15 CHK 8 0 20 20 FISH 8 10 15 10 HAM 40 40 35 10 MCH 15 35 15 15 MTL 70 30 15 15 SPG 25 50 25 15 TUR 60 20 15 10 ; model.lp/* model.lp */ max: 143 x + 60 y; 120 x + 210 y <= 15000; 110 x + 30 y <= 4000; x + y <= 75; |